这里是网站介绍,请在后台设置
hive 运行路径 ==> /usr/local/service/hive/bin
[hadoop@10 ~] cd /usr/local/service/hive/bin [hadoop@10 bin]$ hive --hiveconf hive.execution.engine=tez #使用tez计算引擎
hive中的‘product_info’已经成功映射了 hbase中的gizwits_product。 映射方法见‘emr-hive’中"product-info.sql、product-info-exec.sh"
使用 count() #返回的数据条数为0
hive> select count(*) from product_info; OK 0 Time taken: 2.687 seconds, Fetched: 1 row(s)
第一次执行
hive> select count(product_key) from product_info; Query ID = hadoop_20190110144242_585f9dc0-8635-46e7-8739-55f6cdceff46 Total jobs = 1 Launching Job 1 out of 1 Status: Running (Executing on YARN cluster with App id application_1546417190707_0003) ---------------------------------------------------------------------------------------------- VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED ---------------------------------------------------------------------------------------------- Map 1 .......... container SUCCEEDED 1 1 0 0 0 0 Reducer 2 ...... container SUCCEEDED 1 1 0 0 0 0 ---------------------------------------------------------------------------------------------- VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 7.51 s ---------------------------------------------------------------------------------------------- OK 95243 Time taken: 13.497 seconds, Fetched: 1 r
第二次执行
hive> select count(product_key) from product_info; Query ID = hadoop_20190110144357_7e5ba026-6006-409d-b829-fa1df7ca2106 Total jobs = 1 Launching Job 1 out of 1 Status: Running (Executing on YARN cluster with App id application_1546417190707_0003) ---------------------------------------------------------------------------------------------- VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED ---------------------------------------------------------------------------------------------- Map 1 .......... container SUCCEEDED 1 1 0 0 0 0 Reducer 2 ...... container SUCCEEDED 1 1 0 0 0 0 ---------------------------------------------------------------------------------------------- VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 5.73 s ---------------------------------------------------------------------------------------------- OK 95243 Time taken: 8.109 seconds, Fetched: 1 row(s)
如果是hive on mr
其两次执行的结果如下:
#第一次执行 hive> select count(product_key) from product_info; WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Query ID = hadoop_20190110144002_26033397-acb6-4745-a896-bd5d56a574a2 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer= In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= Starting Job = job_1546417190707_0001, Tracking URL = http://10.8.1.14:5004/proxy/application_1546417190707_0001/ Kill Command = /usr/local/service/hadoop/bin/hadoop job -kill job_1546417190707_0001 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2019-01-10 14:40:12,599 Stage-1 map = 0%, reduce = 0% 2019-01-10 14:40:21,018 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.45 sec 2019-01-10 14:40:27,325 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.28 sec MapReduce Total cumulative CPU time: 6 seconds 280 msec Ended Job = job_1546417190707_0001 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 6.28 sec HDFS Read: 11819 HDFS Write: 105 SUCCESS Total MapReduce CPU Time Spent: 6 seconds 280 msec OK 95243 Time taken: 26.359 seconds, Fetched: 1 row(s) #第二次执行 hive> select count(product_key) from product_info; WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Query ID = hadoop_20190110144033_88b03a83-68d3-4e26-b675-972b0ff540ea Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer= In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= Starting Job = job_1546417190707_0002, Tracking URL = http://10.8.1.14:5004/proxy/application_1546417190707_0002/ Kill Command = /usr/local/service/hadoop/bin/hadoop job -kill job_1546417190707_0002 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2019-01-10 14:40:41,076 Stage-1 map = 0%, reduce = 0% 2019-01-10 14:40:48,460 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.12 sec 2019-01-10 14:40:53,669 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.79 sec MapReduce Total cumulative CPU time: 6 seconds 790 msec Ended Job = job_1546417190707_0002 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 6.79 sec HDFS Read: 11819 HDFS Write: 105 SUCCESS Total MapReduce CPU Time Spent: 6 seconds 790 msec OK 95243 Time taken: 20.815 seconds, Fetched: 1 row(s)
测试结果:
hive on tez | hive on mr | |
---|---|---|
第一次 | 13.497 seconds | 26.359 seconds |
第二次 | 8.109 seconds | 20.815 seconds |
结论:hive on tez 查询效率高于hive on mr。
全部评论